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ABSTRACT 
 
The CEA (Commissariat à l’Energie Atomique) is planning to build a new MTR called the Jules 
Horowitz Reactor (JHR). JHR at Cadarache will become by 2014 and for decades a major 
research infrastructure in Europe for supporting existing power plants operation and lifetime 
extension as well as future reactor developments [1]. AREVA (Technicatome and Framatome-
ANP) and EDF are performing the design studies. 
 
The JHR will be a tank pool type reactor using light water as coolant and moderator. The reactor 
has been designed to provide a neutron flux strong enough to carry out irradiation relevant for 
generations 2, 3 and 4 power plants: flexibility and adaptability, high neutron flux, instrumented 
experiments, loops to reproduce environments representatives of the different power plant 
technologies . 
 
Updated safety requirements and LEU fuel elements have been taken into account in the design 
of this high flux reactor. This paper presents the guidelines for the design of the main items, the 
various options considered and the choices made at the end of the detailed studies phase 
regarding: 
− Core shape, 
− Fuel element and core pitch, 
− Reflector and core-reflector interface, 
− Normal and emergency cooling systems, 
− Reactivity control system. 
 
 
MAIN OBJECTIVES OF THE REACTOR 
The “Jules Horowitz Reactor” (JHR) will be a structuring infrastructure of the European research 
area. The main purposes are to: 
− Support existing power plant operation: safety, lifetime extension management, material 

reliability, fuel performance, etc.. 
− Support the optimization of generation 3 power plants that will be in operation for a large part 

of the century 
− Support the development and qualification of advanced materials and new fuels under 

conditions anticipated for new fission and fusion reactors. 
− Develop expertise and support training of staff to be employed in the nuclear industry, which 

is a major stake to guaranty the safety and the effectiveness of nuclear energy 
− Support future decisions made by countries and the European Community related to the 

construction of new nuclear power plants or the assessment of new concepts. 
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PERFORMANCES AND CONSTRAINTS 
The following performances and constraints are considered in the reactor design. 
 
The JHR has to reach both a high fast neutron flux level in the core (~ 5 1014 n/cm2/s, 
E ≥ 0.907 MeV) and a high thermal flux level in the reflector (~ 6 1014 n/cm2/s, E ≤ 0.625 eV). 
Moreover, nuclear heating effects (from gamma rays and neutrons) have to be limited in the core 
and in the reflector. 
 
Experimental devices are the major design priority. The core design optimization takes the 
following objectives into account for the reference operations configuration: 
− Ten experimental devices can be inserted in the core simultaneously. They can be inserted into 

the center of a fuel element or replace a complete fuel element, 
− Six irradiation devices on displacement systems in the core periphery, allowing neutron and 

heat flux adjustment. 
− Possibility of many complementary experiments in the reflector, in particular to produce 

radioisotopes for industrial or medical use. 
 
The fuel enrichment in 235U should not exceed 20% with new meat (assuring 8 gU/cm3). 
 
The design basis for the reactor is a thermal power of 100 MW. The power generated in the core 
will be drained off through three different systems: 
− The primary system (which is the second barrier) including the core and the primary-

secondary heat exchanger, 
− The secondary system including the primary-secondary and the secondary-tertiary heat 

exchanger, 
− The tertiary system made of the secondary-tertiary heat exchanger. 
 
The primary and secondary systems are closed systems; the tertiary system is an open system 
with cold water supplied by the "Canal de Provence". 
 
A single fuel element design should be used to limit development and qualification costs. 
 
The assumed working limits used in the design process for the fuel element under normal 
conditions are an external cladding temperature limited to 140°C and coolant velocity limited to 
18 m/s. 
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DESIGN INTRODUCTION  
The JHR design is fully oriented toward experimental devices [2]. 
There are two target core and reflector configurations for irradiation of these experimental 
devices: 
− A so-called "reference" operating configuration capable of higher neutron flux performances 

in-core and in reflector (5 x 1014 n./cm2/s in effective fast flux at the steel test piece in the 
core, 550 W/cm and 8 x 1013 n./cm2/s at the PWR type rod with 1% U235 enrichment in 
reflector on displacement system ), 

− A so-called "large" operating configuration capable of irradiating a larger number of samples 
and comprising two large in-core devices. 

 
Detailed performances are presented in the "Performances achieved" section. 
 
The design is based on: 
− A CDCF (Functional Specification) and 

an initial state determined from prior 
studies, 

− An iterative process between the 
designer and the customer, including 
monitoring of nine key performances 
(see adjacent table: the performances 
concerning cores directly are in bold), 

− Common prime contractor – client 
choices for the main options, 

− On the shared desire to have an object 
that respects objectives and constraints 
but is open ("aesthetic" final judgment), 

− Analysis of operating experience with 
the same type of French reactors (past 
and present), 

− Prime contractor ( TA – FRA – EDF ) 
familiar with operating problems since it 
operates nuclear installations itself, 
including experimental installations 
(RNG, RES, Azur). 

 
The prime contractor carried out about 50 
man.years of studies on the core, the 
reflector and the systems described in this document, for neutronic and thermohydraulic aspects 
but excluding the development and qualification of calculation forms. The purpose of this paper 
is not to present all the work done, but rather to summarize: 
− The reasons for the main choices in definition studies:  

• Presentation of the core-reflector design (see adjacent diagram), 
• Presentation of systems and system design: primary-secondary-tertiary systems, safety 

systems 
− Performances achieved. 

1. The flux level in the highest performance 
configuration and the "flux range" specific to 
each configuration 

2. The experimental capacity (possible number of 
experiments) specific to each operating 
configuration  

3. The design capacity of the reactor/devices 
interface to accommodate the target 
experimental domain for the RJH, under 
satisfactory safety conditions 

4. The reactor availability ≥ 275 EFPD/year 
5. The operating cost of the reactor and devices 
6. Control of gamma temperature rises at test 

pieces 
7. Design of two locations with only slight 

neutronic disturbances during the cycle 
8. The ability to load-unload experiments, perform 

non-destructive tests, and transfer to cells for 
experimental needs, between cycles  

9. Dismountability (and or) inspectability of all 
components making up the 3 barriers, in order to 
check their integrity 

The 9 key performances 
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STUDIES PROCEDURE AND CALCULATION TOOLS 
The studies are done in an integrated team and are based on a large number of interactions 
between neutronics, safety thermohydraulics, operating thermohydraulics, fuel mechanics and 
thermomechanics aspects. 
 
Globally, the core and reflector design was performed considering: 
− An experimental load composed of in-core material experiments and in-reflector fuel 

experiments to define the main characteristics (concept of standard devices) of the two 
operating configurations, 

− A variety of experimental devices and loads to determine the response of this object in the 
reference configuration version on a wider spectrum and to identify constraints to be taken 
into account in the detailed design of experiments. 

 
In practice, considering: 
− Neutronics: the main 

difficulties encountered are 
related to the large number of 
variables relevant to the 
design, the required flexibility 
in terms of operations and the 
choice of an irregular 
geometry in the cores. 
Initially, based on a core 
representation made using the 
regular grid version of the 
HORUS3D/N deterministic 
scheme [3][4][5][6], variation 
studies carried out 
demonstrated that objects 
could be defined based on 
stochastic calculations 
(MCNP, TRIPOLI) carried out 
on batch cores at the 
beginning of the cycle, with all 
control rods extracted. For 
each calculation case, a 
standard method was used to 
calculate performances on each device (10 cm axial slices) and the temperature rise calculation 
allowed for gamma propagation. Secondly, the irregular shape of the RJH core was modeled 
by making a whole core variation calculation with APOLLO using transport theory (plate by 
plate modeling but in 2D) for the material balance and most neutronic data for safety studies, 
and chaining onto stochastic codes (MCNP, TRIPOLI) for a detailed calculation of 
performances and some neutronic variables. 

− Thermohydraulics: thermohydraulic studies are based on calculations carried out under steady 
and transient conditions (HORUS3D/Th and Sys [3]) and on reactor operating studies carried 

HORUS3D/N

Core and fuel element geometry
Material balance

Operating conditions

CEA93 v. 7
172 groups cross

sections

ENDFB-VI
continuous cross

sections

SILENE : core 2D
geometry

SILENE : fuel
element 2D
geometry

2D : Fuel
elements

172 groups

Homogenized fuel
elements : 6
groups cross

sections

SILENE : ¼ core
2D geometry

Ex core materials
(radial) : 6 groups

cross sections

Ex core materials
(axial) : 6 groups

cross sections

CRONOS2 (diffusion calculation) :
3D core (regular shape or
equivalent regular shape)

6 groups

APOLLO2 : transport calculation

APOLLO2 - transport calculation
(methode of characteristics)
2D : whole core (any shape)

172 groups

Neutron leakage

Tripoli4.3 - Monte-
Carlo calculation :

whole core

2D : ¼ core with
homogenized fuel

elements
172 groups

1D axial : core
172 groups

Material balance :
evolution

MCNP4C2 -
Monte-Carlo
calculation :
whole core

Flux performances
Reactivitiy : control system studies (safety and

control), lifetime, feedback (Doppler,
moderator)

Power distribution, peak power : 3D, plate,
element,

Nuclear heating
...

Neutronic calculation scheme (mainly HORUS3D/N) 
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out using the CEDRIC code. Hydraulic flow calculations were also calculated using the TRIO 
code, 

− Mechanical: the mechanical design was very largely based on the use of a CAD mockup of the 
different components integrated with the CATIA software, 

− Fuel element thermomechanics: on the use of the IDEAS software based on results obtained 
with the MAIA code for the plate (CEA code developed for the U-Mo fuel study). 

 
GENERAL DESIGN 

 
    (grey : Be, orange : Zr, blue : Al, black : fuel plates) 

 
Large configuration core (grey : Be, orange : Zr, blue : Al, black : fuel plates) 

 

30 cm thick Be reflector 

1 cm thick zircaloy gamma screen 

2 cm thick aluminum core tank 

Fuel element consists of 8 cylindrical 
plates separated in 3 sectors 
Fuel: UMo (8 g U/cm3 19.75% U235 
enriched)

12 inter-elements 
positions  

37 center of elements 
filled with control rods  

51 slots in the core 
43 are filled with fuel 
elements 

9 Artificial Radio Elements devices 
in the Be reflector 
Peak values 
(inside a standard aluminium rod) 
3,6 E13 n/cm2/s (fast flux) 
3,4 E14 n/cm2/s (thermal flux) 
1,6 W/cm 

16 PWR-condition irradiation positions in 
the Be reflector (displacement system) 
Peak values 
(inside a 2,5% U235 enriched fuel pin) 
7,7 E13 n/cm2/s (fast flux) 
3,2 E14 n/cm2/s (thermal flux) 
800 W/cm 

6 simple irradiation facilities 
(in the center of a fuel element) 
Peak values 
(on a standard stainless steel rod) 
4,4 E14 n/cm2/s (fast flux) 
2 E14 n/cm2/s (thermal flux) 

4 threefold irradiation facilities 
(in place of a fuel element) 
Peak values 
(on a standard stainless steel rod) 
3,3 E14 n/cm2/s (fast flux) 
2,2 E14 n/cm2/s (thermal flux) 

2 large in core irradiation facilities 
Peak values 
(on a standard stainless steel rod) 
1,3 E14 n/cm2/s (fast flux) 
1,5 E14 n/cm2/s (thermal flux) 
500 W/cm 
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The presentation part of the general design focuses on the core and then on the main systems, and 
terminates with the core – experimental devices interface and performances. 
 
For safety reasons, the primary system has 
to be a solid second barrier. Therefore, the 
reactor is of the tank pool type. In 
addition, because of: 
− The OSIRIS feedback about radial 

displacement systems: the selected type 
was radial because it is a proven and 
robust design for ramp condition on 
fuel samples, 

− The need to manipulate some 
experimental devices during the cycle, 

− Flexibility: to facilitate changes in the 
experimental load in reflector (size, 
number, location), 

− The low operating costs objective, 
including when the operator wants to 
change the reactor configuration (2 months to change the configuration when the reactor tank 
is changed; limitation to the size of unloaded components; limitation of immediate and future 
waste), 

the tank shell is between the core and the reflector, and the reflector is an open area1. 
 
In summary, the installation is very versatile, cost effective and safe. 
 
The core general design is characterized by three main separate components: 
− The core itself with its rack, 
− The tank shell, 
− The reflector. 

CORE SHAPE (1ST POINT) 
There are many conflicting interests affecting the core. We would like: 
− Many experimental devices with high fast flux and low nuclear heating (up to 5 1014 n/cm2/s), 
− Operability of 275 days per year, but only a few fresh fuel elements per year (about 100), 
− A high level of safety, 
− U235 enrichment ≤ 20% with a new meat technology. 
 
Therefore, we have to place the following in a small volume: 
− Experimental devices, 
− Uranium for the lifetime, 
− The moderator, 
− The coolant, 
− Reactivity control devices, 
− The required structures. 
                                                 
1 the pressure tubes option was not selected mainly for the reasons mentioned above. 

fuel element characteristics 

core shape
core rack

reflector

general design 

core-reflector 
interface
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The simplified logic sequence for the shape of the core is as follows: 
1. The target high fast flux at in-Core devices (effective flux equal to 5 1014 n./cm2/s) requires a 

high power per unit volume (about 600 kW/l), 
2. It also requires that the moderator mass present should be minimized. The logical choice is to 

only use water as the moderators so as to not excessively reduce the mass of the coolant. 
However, minimizing the moderator mass leads to an unfavorable moderation to reactivity 
ratio (and therefore an unfavorable moderation to cycle duration) ratio. For the heat 
transporter, this means that the use of water under flux should be optimized, which is why the 
shape of the existing structures is rationalized (any increased complexity or fractioning of the 
shape requires more water that is subtracted from the extraction of the power from the fuel), 

3. Operability of 275 days per year requires a minimum cycle duration of 25 EFPD (Equivalent 
Full Power Days). The low target consumption of elements makes management by fractions 
necessary, and therefore a high cycle duration in batch.  

4. This long cycle duration means that neutron leaks should be minimized. Apart from the 
contribution of the reflector (see below), this means that a shape like an orthocyclinder should 
be found 

5. Given the considerations about the moderator in point 2, the long cycle duration and the 
limited enrichment make it necessary to maximize the mass of U in the element, 

6. Control of the high specific power and the temperature limit associated with the fuel make it 
necessary to maximize the exchange area and the fluid velocity at the contact point, 

7. Maximizing the exchange area and the velocity, and minimizing the volume of the moderator, 
result in a high pressure loss at the core boundaries (about 8 bars). This pressure loss (and 
other factors) will be applied at the tank shell, making it thicker and therefore, depending on 
the solution, will introduce a given distance between the peripheral fuel elements (that supply 
the reflector) and the closest neutron devices in the reflector, 

8. But the highest fast flux targeted at the reflector devices closest to the core requires that 
attenuation of the fast flux between the closest fuel elements and the device should be 
minimized. This can be done by minimizing the distance by judicious choice of the global 
geometry of the core and the inserted materials. 

 
This is why we selected a cylindrical shape for the core and the tank, a rack independent of the 
tank, and aluminum as the main material for the structures: 
− Neutron leaks are minimized, which is favorable for the cycle duration, 
− A cylindrical tank has a better intrinsic resistance to pressure. Its thickness is lower. Therefore 

flux performances in reflector are better, 
− The fact that the rack and the tank are independent simplifies the mechanical design and gives 

better operating flexibility. The operator can replace the rack at lower cost so as to adapt it to 
necessities other than those initially specified for the experimental load: change shape (size of 
devices in core) or the material from which it is made (beryllium, Be-Al alloy, etc.). 

 
As a reminder, this solution and other examined shapes are summarized in Figure 1 with their 
main characteristics. 
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Figure 1: different types of examined rack-tank geometries 
 

  
  

  
Rectangular core Regular hexagon with elements in reflector 

  
Irregular core (external cylindrical ring) Chosen solution: daisy shape 
 
We will discuss the fuel element and then return to the thermohydraulic core design. 



9/25 

MAIN CONSTRAINTS FOR THE FUEL ELEMENT DESIGN AND CORE PITCH 
 
Several different geometries have been reviewed for the choice of the fuel element as shown in 
figure 2. 
 
Figure 2: Different types of elements considered: 

 

1: core element 2: rectangular element 

  
3: diamond-shaped element 4: folded plates element 

 

 

5: cylindrical element   
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The cylindrical geometry (5 in figure 2) was chosen because: 
− Curved plates have a good flow resistance at high speed, 
− Cylindrical elements have good mechanical strength, 
− When plates expand (due to heating, meat swelling), the geometry of the plates lattice is good 

and known,  
− A future fuel manufacturer (AREVA-CERCA) has good feedback with this type of fuel 

element and for the design to be successful, we need to be almost off limits. 
 
U-Mo fuel is not yet fully qualified [7][8][9], therefore it is important to minimize other hazards. 
After much discussion with the manufacturer, we chose the following limits: 
− Smallest diameter for a curved plate: about 40 mm,  
− Smallest gap between two plates: 1.84 mm. 
 
Moreover, for in-core experimental devices, we would like: 
1. In a given position, to be able to indifferently place a large device (diameter 92mm), a fuel 

element with a small device (32 mm) or a single element, 
2. 30 cm above the core, to have a variation of 30% of the diameter of large devices, 
3. Below the core, be able to prolong the device over 90 cm. 
 
The core reactivity control will be discussed again (see “Reactivity control system”). For the 
moment, we will just mention that the choice was made to insert a hafnium rod at the center of 
the element (when it does not include a device). This choice means that point 2 above is not 
controlling compared with point 1. 
 
The size of large devices (diameter 92 mm) defines the minimum size of the cell that can contain 
it or can contain a fuel element, considering the peripheral water depth necessary for cooling and 
the clearance for loading and unloading (final diameter 96 mm). In theory, with respect to this 
minimum size related to experimental devices, we could: 
− Have a larger fuel element and therefore a larger cell. This option was not selected because: 

• It is necessary to keep the ratio of the intrinsic efficiency of the central absorber to the 
reactivity of fuel elements compatible with the number of elements that can be rodded, 
taking account of control criteria, 

• It would imply a device larger than the device selected, or a greater depth of water around 
the device (therefore a performance drop in fast 
flux), 

− Have a fuel element smaller than the cell: this option 
was not selected so as to maximize the cycle duration 
by maximizing the quantity of meat and reducing 
neutron losses. 

 
The diameter of the element, allowing for the loading 
unloading clearance, is about 94.5 mm. Considering the 
size of small devices to be inserted in the element (32 
mm), the value chosen for the water channel (1.84 mm for 
the standard channel) and the thickness of the plates 
currently being qualified (meat: U-Mo with 8% of Mo by 
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mass, 0.61 mm thick, 8 gU/cm3, 20% enrichment in U235), the RJH fuel element is provided 
with 8 plates (see adjacent). 
 
The choice was made to have the same geometry of the element both with U-Mo meat and with 
U3Si2 meat, with the objective of common standardization and optimization of hydraulic 
systems.  
 
Since the density selected for U3Si2 is 4,8 gU/cm3, the enrichment to obtain a core with U3Si2 
fuel with the same cycle duration as a core with U-Mo fuel is about 27%, which is slightly above 
the limit of 20%. This is a fallback solution while waiting until qualification of the U-Mo fuel is 
fully available. 
 
The fuel height of 60 cm was considered to be sufficient for flux uniformity on experimental 
devices. 
 
There are two other points to complete the design of the element: 
− Consumable poison plates (Al-B at the moment) are inserted at the end of the plate at the exit 

from the hydraulic channel to break the upwards thermal flux at the exit from the fuel zone 
and therefore power factors at the hottest point of the primary system, 

− The rack is perforated with cells that can indifferently accommodate large devices or elements. 
This rack is made of Al. The external plate of the fuel element is a fuel plate and not an inert 
end plate. This: 
• Maximizes the fuel mass in the element, 
• Makes it easy to examine the outside of the external plate of the fuel element, this plate 

being the location of the hottest point in some core configurations, 
− In order to maximize the number of plates and the diameter of rods containing hafnium, and 

considering the diameter of devices to be inserted inside the elements, the internal channel of 
the element is also open. However, a removable sock protects the internal fuel plate and 
directs the water flow. 

 
The isthmus between two cells has been minimized to minimize axial neutron losses and the 
material inserted between the elements and large devices. 4 mm is sufficient, since the rack only 
needs to resist the core delta P (independence between the rack and the tank). Therefore, the core 
pitch is about 100 mm. 

CORE SHAPE (2ND POINT) 
 
The most compact shape with cylindrical cells is a hexagonal 
one with a triangular pitch. 
 
With this type of shape, there are 19 cells for a rack with one 
central cell and 2 rings, 37 for 3 rings, 61 for 4 rings, etc.2 
 
Considering that three cells are occupied by large devices, this 
gives 16, 34 or 58 fuel elements (see adjacent). A power per 
                                                 
2 Shapes based on a central pattern of 3 elements were also considered, and found to be less appropriate to our case. 
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unit volume of 600 kW/l is necessary to obtain fast fluxes of the order of 5 x 1014 n/cm2/s in core. 
Since the lattice pitch is 10 cm and the fuel height is 60 cm, the volume of a mesh centered on an 
element is about 5.2 liters, namely 3.1 MW per element. 
 
Furthermore, assuming the maximum envisaged velocity of 18 m/s for water in channels between 
plates, there is about 220 m3/h for one element. See the "Cooling systems" section for the 
correspondence between power and velocity. 
 
In this case, the characteristics of the different lattices are as follows: 
− 19 cells, 16 fuel elements: power about 50 MW and element flow about 3500 m3/h. This size 

is unacceptable considering the number of devices to be inserted (dimensional constraints 
assumed for the part of devices above the core make it impossible to have two devices in two 
contiguous cells), and considering the cycle duration, 

− 37 cells, 34 fuel elements: power about 106 MW and element flow about 7500 m3/h, 
− 61 cells, 58 fuel elements: power about 181 MW and element flow about 12800 m3/h. This 

core is not sized economically considering the number of devices (10) to be inserted in the 
core. 

Therefore, the choice was made to have a shape with 37 cells.  
 
However, the disadvantage of a compact hexagonal shape inserted in a cylindrical tank is that 
only the 6 corner elements are genuinely close to the tank and therefore to the reflector. The 
selected shape is not the most compact, so as to improve performances in reflector. The so-called 
"daisy shape" was selected after examining several geometries. 
 
The following figure shows the variation between the compact hexagonal core and the selected 
core. 

  

 
It is characterized by: 
− A significant increase in the fast flux at the closest devices in reflector, 
− A moderate loss of the maximum fast flux in core (a few %), 
− A moderate increase in neutron losses, compatible with the required cycle durations (loss less 

than 600 pcm). 
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Furthermore, there are 12 inter-element positions with this geometry. These positions have a 
useful dimension (with regard to mechanical constraints) of 35 mm. They introduce adjustment 
variables that can be used to vary the stability of performances during the cycle or core control. 
They could also be used to insert small devices or in core instrumentation. 

CORE RACK 
The choice of the nature of the rack is consistent with the method chosen considering the high 
level of fast flux required in core. Different materials were reviewed including aluminum, 
zirconium (ZR4), beryllium (pure or alloyed) and water (fuel elements in tubes immersed in 
water). Aluminum was chosen for the following reasons: 
− From the point of view of fast flux performance in core and in reflector, it is the most 

attractive material both for the intrinsic flux level on grouped devices and for the indirect 
impact due to the potential core power through the impact of materials on the hot point factor. 
The last 15-20% in the fast flux performance in core requires that the moderator mass under 
flux should be reduced (see “core shape 1st point”). This is why we use a highly under-
moderated cell at the element and a slightly moderating material at the rack, for consistency 
reasons, which excludes water and pure Be. To give an order of magnitude, insertion of a pure 
Be rack increases the reactivity by about +10000 pcm, and causes a 15 to 20% reduction in 
fast flux performances in core, and a 30% reduction of in reflector performances (fast and 
thermal flux), 

− Advantages related to zirconium: neutron captures with zirconium are about 2300 pcm less 
than with aluminum, reduction in gamma heating in devices from 8 to 14%, were not 
considered to be more important than the disadvantages that are lower performances in terms 
of flux (see above), material economically less attractive than aluminum from the 
manufacturing point of view. 

 
These are the reasons why aluminum was chosen as the reference solution for the rack, but it 
would always be possible to introduce an Al-Be alloy rack later, depending on the objectives of 
particular experimental campaigns. 

REFLECTOR AND CORE-REFLECTOR 
INTERFACE 
Fast neutron flux and temperature rise 
objectives for PWR type rods (enriched to 1% 
of U235) are high. 
 
This is why the “daisy shape” core was chosen 
with a core-reflector interface design 
minimizing materials that could slow fast 
neutrons. Al was chosen (2 cm thick), 
considering the cylindrical shape of the tank, 
the simplicity of its cylindrical shape and 
moderate mechanical constraints. 
 

Flux in reflector  
Fast flux Thermal flux 

Water Be Water Be 

    
Core-reflector interface 

 
square : 5x5 mm ; red : higher flux ; blue: lower flux 
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Several materials were reviewed for the reflector, including light water, heavy water, beryllium, 
graphite, 
 
Be was chosen for the following main reasons: 
− Versatility of loading patterns in experimental devices, which is not the case for heavy water, 
− Good resistance under flux in safety terms, which is not the case for graphite (Wigner effect), 
− Increase in the volume in which there is a maximum neutron flux, which is not the case for 

light water which very quickly reduces the fast flux (for example see in the above figures), 
− Reduction of radial neutron losses and therefore increase in the cycle duration, which is not 

the case for light water. 
 
Geometrically, the reflector is entirely made of Be, including displacement devices, and is 
immersed in light water in the reactor pool. The shape of the blocks, the water depth necessary 
for cooling and handling and their adaptation to a change of tank (change in the tank size when 
changing to the so-called large configuration) have been optimized. The alloy grade was also 
chosen and the option of uncladded Al blocks has been selected for the moment. The small size 
of the blocks facilitates ageing management. 
 

 
Reference configuration reflector 

 
Finally, the core is almost entirely surrounded by zircaloy 4 gamma screens (2 x 2 cm thick), in 
order to limit nuclear heating in some reflector devices to values of less than 2 W/g. These 
screens are dismountable. 
 
It is always possible to remove the mobile Be block and perform the experiment in water, 
depending on the needs of some experiments on displacement devices. 

Displacement 
system locations 
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COOLING SYSTEMS 
 
The cooling systems have been designed taking account of: 
− Normal operation (reactor under shutdown condition or power operation), 
− Accident conditions: loss of coolant or primary flow accidents, loss of power supply, blackout 

and reactivity accidents (including BORAX accident). 
 
The main principles of core and reflector cooling systems are as follows: 
− Fuel elements and vessel internal structures are cooled by the main primary system (RPP) 

which operates up flow; this system contributes to cooling of the experimental devices set in 
the reactor vessel, 

− Reflector devices and structures are cooled by the reflector primary system (REP) which 
operates down flow and is divided up into 2 legs open to the pool; MOLFI targets (TC99m 
production) are cooled by one leg while other experimental devices, beryllium blocks and 
internal structures of the reflector are cooled by the other leg; the reactor pool is also cooled 
by this system, 

− Particular cooling systems could also be connected to experimental devices directly (not 
detailed in this paper), 

− Secondary (RSS, RSE, RSD) and tertiary (RST) cooling systems are associated with the 
previous systems, 

− Residual heat is removed from the reactor towards the pool by the emergency cooling system 
which provides forced circulation through the core as soon as the main primary system is 
shutdown, 

− Residual heat is removed from the reflector towards the pool by natural convection if the 
forced circulation is lost, 

− The reactor pool is cooled by an emergency plant cooldown system (RUS).  
 

Reactor cooling system (RPP circuit) 
The thermo hydraulic design of the primary system is closely related to the core design and the 
required experimental range. The main constraints and options considered are that: 
− The hot point factor can move in the core: no additional constraints should be added for 

experimental devices and the different device loading patterns. Therefore the core is not 
thermohydraulically zoned, 

− The hot point factor controlling the primary flow must be such that a wide experimental range 
can be achieved. The value chosen for this factor is 2.9, excluding fuel manufacturing 
uncertainties. This value was chosen based on a large number of neutron studies carried out on 
experimental devices and associated performances, loading patterns for fuel elements, fuel 
management strategies, the various possible control schemes, components used to make 
adjustments or to transfer constraints and the different types of fuels (U-Mo and U3Si2) 
envisaged for the reference configuration and for the so-called large configuration, 
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− The hot channel imposes the required flow at the other core channels. The limiting speed of 
18 m/s, associated with the fuel qualification file, was used as the ratio of the element flow to 
its transfer section, 

− The neutronic design requires a small transfer section for water at fuel elements. 
 
Thermohydraulic studies during normal operation and during accident operation have 
demonstrated that a flow of about 220 m3/h per element (fuel plate refrigeration flow) are 
sufficient to obtain a dissipated nuclear power inside the tank equal to 100 MW (see inset 1). 
They confirm the point described in the "core shape (2nd point)" section. 
 
 

Inset 1: Hot channel thermohydraulic studies 
 
Main input data: 
− Maximum 3D power factor: 2.9 plus 16% local fuel mass heterogeneity, namely 3.37 (about 

550 W/cm2) 
− Maximum 2D power factor on a track (including local fuel mass heterogeneity of 5%): 2.52 
− Nominal airgap (derived from discussions with the manufacturer): 1.84mm 
− Reduction in airgap (oxide layer, swelling, manufacturing tolerances): 0.29mm 
− Hot channel under-feed: 4% 
− Exchange factor: 15% 
− Overheating at the wall: 15% 
− Coefficient of friction under flux: 3.8% 
− Inlet water temperature (90% of the time during the year): 25°C with 0.5°C uncertainties and a 

variation range during operation equal to 2.5°C. 
− Core power (nuclear power deposited inside the tank): 100 MW with 6.5% uncertainties and a 

variation range during operation equal to 3% 
− Uncertainty on the primary flow and variation range during operation: 3.2% and 4% 
 
Criteria: 
 Fuel thermal Thermohydraulic 
SF1 T wet wall ≤ 140°C No nucleated boiling 
SF2 T max fuel < 515°C No nucleated boiling 
SF3 T max fuel < 515°C 

T max cladding < 400°C 
No flow redistribution  

SF4 T max cladding < 645°C No flow redistribution 
 
Example transients: 
- Primary pump stopped, primary pump blocked, loss of electrical power supplies, general 

power supply failure and change to natural convection, 
- Partial or total loss of secondary pumping,  
- Break diameter 200 mm in the core coolant system in pool, break diameter 100 mm in shielded 

compartment, break diameter 600 mm 
- Borax type accident 
- Reactivity injections (graduations and ramps). 
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Studies have defined the required cooling flow rate for other internal reactor vessel components 
(experimental devices, vessel, control rod). The total primary flow value is 8500 m3/h. 
 
The core pressure drop is 7.8 bars for the reference configuration (4.7 bars for the large core 
configuration). These high core pressure losses that are due to a combination of a low flow area 
and a high primary flow rate required by the power level of 100 MW results in self-pressurization 
of the core. This effect is accentuated by the pressure drop in the system and its components 
between the core outlet and the pressure reference point of the system. The resulting core outlet 
pressure is about 5 bars and no accumulator is required to increase the pressure level. Otherwise, 
ALARA studies have shown that no decay tank is required. 
 
Safety and operations studies performed for various designs have led to the design shown 
opposite: 
− The presence of 

parallel lines heat 
exchangers / pump 
with check valve 
downstream from the 
pump makes the 
design more robust 
against incident and 
accident transients 
(specially in the case 
of a pump failure). The 
number of lines (three) 
is chosen to achieve a 
technical-economic 
optimum: each pump 
would need to be 
oversized if there were 
fewer than 3 lines, and 
more than 3 lines would not improve safety very much considering the extra cost of the 
installation, 

− The primary pump flywheels enable a changeover to the emergency core cooling system in 
case of a loss of power supply; manually-operated valves upstream and downstream from the 
core allow core cooling by natural convection in case of a blackout, 

− Safety suction lines connected upstream from each pump prevent cavitation (the required Net 
Positive Suction Head is respected) during transients and keep the water inventory of the 
primary system in the case of a pipe break, 

− The small bypass line installed on the check valve of one of the suction lines provides a means 
of having an available pressure reference for the primary system (1.7 bars) and for monitoring 
water transfer between the primary system and the reactor pool, 

− The location of the heat exchangers, upstream from the pump, minimizes the internal pressure 
in these components and consequently in the secondary system, which on principle is kept at a 
pressure level higher than the primary system; a tubular heat exchanger design has been 
selected, 
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− The upstream location of the heat exchangers increases the self-pressurization effect in case of 
a pump failure due to the increase of the flow rate in the remaining lines. 

Pool cooling system (REP circuit) 
This system cools devices present in the reflector, the reflector and its structures and pool water 
(with everything that is stored in it before transfer to the rest of the installation). 
 
The general shape of the core, and the nature and shape of the reflector (see “general design”) 
was dictated by the need for good flexibility for experimental devices in reflector. Consistently 
with this requirement, the circulation direction in the pool coolant system is downwards, so that 
there is no need to manage leak tightness near the top part of the reflector by bringing the water 
box into the lower part of the reflector. 
 
It is composed of: 
− Two legs so that the cooling flow firstly at the REAs and secondly at the other devices and the 

structures can be differentiated. These two legs each comprise two pumps in parallel. They 
leave from the water box present in the lower part of the reflector, 

− A heat exchanger with the tertiary. 

Secondary and tertiary systems 
During normal operation, power is evacuated from reactor and pool coolant systems through 
2 secondary systems connected to the tertiary system. The main options for these systems are: 
− Secondary systems at higher pressure than primary systems (control of primary-secondary 

leaks), 
− A tertiary system that is the only cold source of the installation during normal operation. This 

system operates by gravity between the Canal de Provence and the EDF canal. 

Normal and safety shutdown systems (RUC, RUP, RUS circuits) 
The method of evacuating power from 
the installation during normal 
operation, during shutdown after the 
primary pumps have stopped and 
before power is evacuated by natural 
circulation with pool water, and during 
incident and accident transients after a 
failure of normal systems, is as 
follows: 
− The RUC system (core safety 

cooling system) transfers energy 
deposited inside the tank (core, 
rack, etc.) towards the reactor pool 
through the RUP system (reactor 
pool safety cooling system). These two systems operate in forced circulation, 

− The RUS system (secondary backup cooling system) evacuates energy to the outside through 
the cooling towers, 
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During unloading operations, the pool can be cooled by the REP system or by RUP/RUS circuits 
indifferently. Core cooling through a RUC line makes it possible to: 
− Remove the first device one hour after shutdown, 
− Remove other devices after 6 hours and remove the tank cover, 
 
The first fuel element can then be removed after 13 hours. 

REACTIVITY CONTROL SYSTEM 
Due to the initial constraint of having a single type of fuel element (to minimize fuel element 
development and qualification costs), reactivity control is based on the use of rods composed of a 
33 mm outside diameter hafnium cylinder with an inside diameter of 24 mm and a 20 mm 
diameter solid aluminum core, that can be inserted in the center of elements or at locations 
between elements. The follower of the active part is an aluminum cylinder. 
Considering the required performances in term of total system reactivity (about 22000 pcm) and 
constraints related to devices above the core, the choice was made to place absorbers at the center 
of available elements (27 elements for the reference configuration with 34 fuel elements). This 
also has the advantage that there can always be some fuel plates available between an absorber 
and an experimental device. 
These 27 absorbers are distributed: 
− In 3 safety-shutdown absorbers located in the high position before criticality, for which the 

mechanisms are sized for a fast shutdown of the reactor (drop in 0.5 seconds during a trip), 
− In 20 to 21 safety-compensation absorbers that are installed to compensate for the slow change 

in reactivity while controlling the shape of the in core flux layer. These absorbers are inserted 
in the core when the trip is triggered, 

− In 3 or 4 control absorbers that are installed for regulation and for preventive shutdown of the 
reactor. The purpose of the preventive shutdown is to prevent backup absorbers from dropping 
(trip) so that the system can quickly become critical again. 

 

DEVICES/REACTOR INTERFACE AND DEVICE DESIGN  
From the point of view of the core design (see [10] for the others), the presence of in core or in 
reflector devices results in: 

1. Performances to be achieved in the form of irradiation of test pieces. Achieved 
performances are described in detail in the "Detailed performances" section, 

2. By the need to control or to participate in the control (case of loops) of thermohydraulic 
conditions internal to devices. This results in thermohydraulic studies of the physical 
interface between devices and primary systems (core and pool) at the boundary of devices 
to define the fraction of the primary flow allocated to the device. Note that the high core 
delta P enables wide freedom for in core flows (adjustment by a diaphragm), 

3. By an impact on the neutron data to be taken into account for thermohydraulic core safety 
and operating studies. The iterative approach is described in detail in the "Neutronics" 
section below. 

4. By an analysis of possible aggressions of the core by devices. This mainly concerns so-
called energy devices. See the "Thermohydraulic" section below. 
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Neutronics 
The method of taking account of experimental devices was iterative due to the number of 
variables of interest considered, the large number of experiment types considered and the large 
number of possible combinations of loads and operation of the reactor: 
− Neutron studies of cores (reference operating configuration, large operating configuration, 

U-Mo fuel, U3Si2 fuel, reloading by third to reloading by sixth, etc.) with an experimental 
load in standard devices, 

− Include margins to take account of different devices and experimental loads in terms of the 
core design and systems design, 

− Generic study of devices taking account of the main characteristics concerning experiments to 
be done for different reactor types (PWR, BWR, HTR/VHTR, MTR, RNR sodium, RNR gas, 
CANDU). This is a parametric study to quantify the impact of different materials and mixes of 
different materials (device structure materials, material making up the sample, internal fluid in 
the device) on global magnitudes of the core (efficiency of control absorbers, core reactivity, 
counter-reaction coefficients, kinetic relation, reactivity transients, etc.) and on local variables 
(local deformation of the power factors layer). Table n and figure m illustrate the description. 
This generic study determined important parameters and defined the possible experimental 
range with RHJ at this stage of the project, considering the margins used previously. 
Obviously, this experimental range will be defined more clearly during the next phase of the 
studies and after reactor startup tests, 

− Use of the results of detailed studies carried out on material [11] and fuel [12] experimental 
devices, for consistency with the generic study. 

Thermohydraulics 
Reactor safety accounts for the experimental feature of the facility from the design stage:  
− Operation systems for reactor and experimental devices are separated as far as possible: device 

design must take account of all normal and incident operating conditions of the reactor, 
− The consequences of the failure of an experimental device and the hazards relating to 

execution of experiments are analyzed: 
• Some devices are designed to be installed in a pressure tube which must protect the rest of 

the core and experimental load if the barrier of the device should break, 
• A rupture disk is installed on the reactor vessel to limit the overpressure occurring in the 

primary system in such a case,  
− Device auxiliaries must not induce external hazards on the reactor. 
 
The cooling function for experimental devices is ensured: 
− By the reactor cooling system:  

• When the irradiation devices are located in the core, there are two possible ways: 
∗ The reactor primary system: a part of the core flow is allocated to device cooling, 
∗ The pool cooling system up to 2MW of total power from in core devices, 

• When they are located in the reflector, 
∗ The reflector primary system can provide up to 3.7 MW of cooling power for all 

irradiation devices, 
− By the device dedicated secondary system in the experimental cubicle area:  

• The cooling power in this area is up to 2 MW,  



21/25 

• The permanent cooling source for residual heat removal is the pool water. Penetrations 
through the pool are provided in order to install emergency cooling systems for the devices.  

 
After reactor shutdown, cooling flow for the devices is maintained by: 
− Forced convection (RUC/RUP systems) for devices located in the core and natural convection 

for the long term, 
− Natural convection for devices located in reflector.  
 
MAIN CHARACTERISTICS AND PERFORMANCES ACHIEVED 
Reminder: The energy limits are as follows: 
− Thermal flux: 0 – 0.625 eV 
− Mean: 0.625 eV – 0.907 MeV 
− Fast: 0.907 MeV and above 
 
Flux performances are effective fluxes, unless mentioned otherwise. Values are averaged over a 
height of +/- 10 cm around the midplane. 
 

REFERENCE OPERATING CONFIGURATION 
The main characteristics of this core configuration are summarized in the table below: 
 
Nuclear power 100 MW 
Volume 216 l 
Power density 460 kW/l 
Max. effective fast flux in core standard device 5.4 x 1014 n/cm2/s (Peak Value) 
Max. effective fast flux in reflector standard 
device (fuel pin 1% U235) 8.8 x 1013 n/cm2/s (Peak Value) 

Linear power on the irradiation sample (fuel 
pin 1% U235) 600 W/cm (Peak Value) 

  
Reactor cycle   30 Full Power Days 
  
Coolant velocity in the fuel element 18 m/s 
Core outlet nominal pressure 5 bars 
  
Reactivity control system  
Power regulation control rod 2 rods (Hf), Φ 33 mm 
Reactivity control system: shutdown 3 rods (Hf or B4C), Φ 33 mm 
Reactivity control system: compensation 
function 22 rods (Hf), Φ 33 mm 

  

Burnable poison Possibly up to 12 rods (Cd or Gd), Φ 29 mm 
between the elements 

 
The following figure shows flux performances of the reference configuration. All pins in reflector 
are 1% U5 enriched UO2 fuel, thus modeling a high burn up fuel. 
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Studies have determined that at least two of the seven in-core basic irradiation facilities listed 
above yield 4% stability on the fast flux during 90% of a cycle. 
 

LARGE OPERATING CONFIGURATION 
The main characteristics of this core configuration are: 
 
Nuclear power 100 MW 
Volume 321 l 
Power density 310 kW/l 
Max. effective fast flux in core standard device 4.4 x 1014 n/cm2/s (Peak Value) 
Max. effective fast flux in reflector standard 
device (fuel pin 2.25% U235) 7.7 x 1013 n/cm2/s (Peak Value)  

Linear power on the irradiation sample (fuel 
pin 2.25% U235) 800 W/cm (Peak Value) 

  
Reactor cycle   30 Full Power Days 
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Coolant velocity in the fuel element 14.5 m/s 
Core outlet nominal pressure 5 bars 
  
Reactivity control system  
Power regulation control rod 2 rods (Hf), Φ 33 mm 
Reactivity control system: shutdown 3 rods (Hf or B4C), Φ 33 mm 
Reactivity control system: compensation 
function design in progress 

  
Burnable poison Possibly up to 12 rods (Cd or Gd), Φ 29 mm 
 
The following figure gives the flux performances of the so-called large configuration. Both large 
in-core loops comprise 9 PWR-type fuel pins (2.25% U5 enriched). In reflector, pins enrichments 
range between 1% and 2.25%. Fuel is U5 enriched UO2 in all cases. 
 

 
 
CONCLUSION 
In conclusion, the existing definition of the RJH reactor results in: 
− Cores and associated systems for which the design was carried out so as to achieve high 

performances for devices in terms of flux (particularly for the reference configuration) and in 
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terms of the number and maximum size of locations (particularly for the so-called large 
operating configuration), 

− A design enabling high flexibility for devices in reflector with a large useful volume in terms 
of maximum performances in reflector, 

− A general design such that the general reactor configuration can be changed quickly 
(2 months), 

− A system architecture taking account of incident and accident transients, including those 
related to the presence of the experimental load. 

 
Safety studies associated with this reactor cover the U-Mo fuel with 20% enrichment in U235 and 
the U3Si2 fuel with 27% enrichment in U235. 
 
This was possible due to: 
− Many technical exchanges between the main contractor (AREVA, EDF) and the client (CEA), 
− An integrated team organization for leadership, suitable for the context of RJH studies, 
− Pragmatic use of computer programs combining stochastic programs and deterministic 

programs for neutronics, 
− Involvement of the future fuel manufacturer at the right level. 
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